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Abstract
Composite materials exhibit advantages from the combination of multiple properties, which
cannot be achieved by a monolithic material. At present, the use of composite materials in
miniaturized scale is receiving much attention in the fields of medicine, electronics, aerospace,
and microtooling. A common method for producing miniaturized composite parts is
micromanufacturing. There has been, however, no comprehensive literature published that
reviews, compares, and discusses the ongoing micromanufacturing methods for producing
miniaturized composite components. This study identifies the major micromanufacturing
methods used with composite materials, categorizes their subclasses, and highlights the latest
developments, new trends, and effects of key factors on the productivity, quality, and cost of
manufacturing composite materials. A comparative study is presented that shows the potential

and versatility associated with producing composite materials along with possible future
applications. This review will be helpful in promoting micromanufacturing technology for
fabricating miniaturized products made of composite materials to meet the growing industrial

demand.

Keywords: micromanufacturing, composite materials, microproducts, size effects, interfacial

microstructure

1. Introduction

Recently, the use of miniaturized products has been strongly
increasing throughout the globe [1]. There has been a con-
tinuously growing demand for compact, multifunctional,
integrated miniature products. The demand is significant in
the fields of electronics [2], microtooling [1], aerospace [3—5],
medicine and biomedicine [5-7], information technology and
telecommunications [8], automobiles, and microrobots
[9, 10]. Consequently, products and devices are getting
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smaller, down to microscale, due to a near-future demand for
nanoscale. This trend to miniaturization has, in fact, moved
very quickly during the last two decades, driven primarily by
electronics and silicon (Si)-based products. Therefore, Si-
based micromanufacturing technologies, e.g. microelec-
tromechanical systems (MEMS), photolithography, the
lithographie, galvanoformung, abformung (LIGA) process,
and electrochemical deposition [11, 12], have reached a
mature level. Nevertheless, Si-based products have some
intrinsic limitations with respect to geometry (limited to two
dimensions (2D) and 2.5D), material (only Si), mechanical
performance (limited motion, strength, and durability), and
cost (not amenable to mass production) [11-13].

These issues have led researchers to find alternatives for
producing three-dimensional (3D) microparts with the desired
strength, better durability, complex geometry, better surface
finish and cost-effectiveness, using metallic and ceramic
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alloys and their composites [2, 13]. There has also been
noticeable progress in micromanufacturing of different metal-
, ceramic-, polymer-, and composite-based components. Their
fabrication methods, operating principles, size effects due to
miniaturization, batch production, and energy and material
savings have been thoroughly researched [13—15]. Numerous
books and articles are also available that point out various
critical factors and features pertinent to micromanufacturing
of these materials.

However, the possibilities of using bulk materials, such
as metals, ceramics, polymers, and their alloys, are so satu-
rated that it may be difficult to achieve the highest material
properties, such as durability and reliability of the compo-
nents, even when using the most advanced techniques [16].
Composite materials, on the other hand, exhibit endless
possibilities for meeting many of the emerging industrial
requirements, in terms of extreme mechanical, electrical,
magnetic, optical, and thermal properties, that cannot be met
by monolithic materials. The main advantages of composite
materials are their high strength, toughness, stiffness, and
resistance to creep resulting in less corrosion, wear, and
fatigue compared to conventional materials [16, 17]. By
choosing an appropriate combination, it is also possible to
attain specific properties, such as a composite of copper—
aluminum (Cu-Al) clad, which are lighter, stronger, more
solderable, and more electrically conductive compared to
individual alloys [18, 19]. Therefore, composite materials are
indispensable in a variety of applications today from micro- to
nanoscale.

Although micromanufacturing techniques for monolithic
materials are plentiful, not all of them are equally applicable
to the production of microcomponents of composite materials
[20]. In addition, substantial research has been conducted on
micromanufacturing of composite materials. However, this
research is focused on an individual technique. Therefore, an
article reviewing the existing micromanufacturing techniques
of composite materials, highlighting the latest developments
and future trends, will significantly benefit the scientific
community and advance the micromanufacturing of compo-
site materials. In the work presented here, state-of-the-art
micromanufacturing  techniques for producing micro-
composite components incorporating superior properties are
reviewed.

A fundamental description defining the concept of
micromanufacturing and composite materials is provided first
followed by an all-embracing but simple categorization. Since
the field of composite materials is vast, the focus is primarily
on metal- and ceramic-based composite materials, excluding
organic and polymeric composites. Therefore, cutting-edge
micromanufacturing methods of metal matrix composites
(MMCs) and ceramic matrix composites (CMCs) are exten-
sively reviewed, highlighting the latest developments and
future trends/research scope. The key factors influencing
productivity, cost, and quality of the micromanufacturing of
composite materials, such as size effects and matrix-reinfor-
cement interfacial characteristics, are also addressed and dis-
cussed. To demonstrate the potential for micromanufacturing
of composite materials, a bimetallic composite of ceramic and

steel was fabricated by a novel micromanufacturing method,
namely hot compaction diffusion bonding (HCDB). The results
obtained are presented and discussed. Finally, the progress on
analytical modeling and simulation of the micromanufacturing
of composite materials is presented. A comparative study is
also presented that shows the potential for and versatility of
producing composite materials along with possible future
applications. This review will be helpful for promoting
micromanufacturing technology for fabricating miniaturized
composite components with attractive properties to meet the
growing industrial demand.

2. Fundamentals of micromanufacturing and
composite materials

2.1. Micromanufacturing

The concept and/or definition of micromanufacturing has been
addressed by a number of researchers and industrial personnel,
as reported in earlier studies [2, 11-15]. The simplest definition
of micromanufacturing is a system for producing small-
dimensional parts occupying less space and consuming less
resources and energy by downsizing the complete production
process. Since the equipment size is reduced, the mass of the
system can be reduced dramatically. This results in reduced
energy consumption, overhead cost, materials requirement,
noise, and pollution and eventually facilitates a more envir-
onmentally friendly and viable production process. Due to a
reduced manufacturing cycle and higher tool speed, micro-
manufacturing also leads to higher production rates. A study
conducted in [21] demonstrated the influence of miniaturiza-
tion and pointed out that a 1/10-scale reduction of the pro-
duction facility may result in a 1/100-scale reduction of energy
consumption when compared to that of a conventional pro-
duction system/factory. The most noteworthy improvement of
micromanufacturing is its ability to produce components hav-
ing a feature size of less than 100 um [22, 23], close to the size
of a human hair. Figure 1 shows micromachined parts made of
aluminum oxide (Al,O3)-reinforced 316L stainless steel
composite materials that combine the hardness of ceramic and
the strength of steel. A novel method, called the ‘soft molding
technique,” was used. The authors [20] claim that the hardness
of 316 L stainless steel was improved by 1.8 times, enabling
the parts to be stronger, harder, and more wear resistant.
There are a number of techniques and processes that are
used to manufacture miniaturized components. Based on the
materials used, micromanufacturing can be broadly classified
into two major categories: silicon and nonsilicon. In non-
silicon-based micromanufacturing, the materials usually dealt
with are metal, ceramic, polymeric, and composite. Conse-
quently, a number of different manufacturing techniques are
involved and are being practiced in the industry. A useful,
simple, and all-embracing classification is presented in
table 1, including typical applications and common materials
used. There is also a common trend of combining multiple
processes together, termed hybrid micromanufacturing [24].
The type of energy involved in these processes includes
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Figure 1. Microcomposite parts made of Al,Oz-reinforced 316 L stainless steel, combining the hardness of ceramic and the strength of steel:
(a) microgear and (b) piston and linking rod. Reprinted from [20], Copyright (2009), with permission from Elsevier.

mechanical, electrical, chemical, electrochemical, laser, and
electron beam [25]. The working principles entailed include
mechanical forces, thermal effects (melting/vaporization),
dissolution, ablation, recomposition, plastic deformation,
consolidation, lamination, and sintering [24, 26]. Similar to
macroproducts, microcomponents, based on the way they are
produced, can also be classified as subtractive, additive,
joining, forming, and hybrid processes [3-5, 27-30].

2.2. Composite materials

With the rapid development of the modern manufacturing
industry, composite materials are being extensively used as
advanced multifunctional materials in various fields, such as
electronics, aeronautics, medicine, automobiles, and machin-
ing tools, due to their unique properties that eliminate tradi-
tional limitations due to the physical and mechanical
performance of monolithic materials [34, 35]. For example,
tungsten carbide (WC) has good hardness and wear resistance
but poor strength and toughness [36, 37], while high strength
steel has excellent strength and toughness but low hardness
and wear resistance [38—40]. A layered composite of WC and
high strength steel can combine their advantages and be used
in many engineering applications.

A composite material can be defined as a material fab-
ricated from two or more integral materials with considerably
different physical and chemical properties that, when com-
bined, produce a material with characteristics different from
the individual constituents. The individual constituents stay
separate and distinct within the completed structure, differ-
entiating composites from mixtures and solid solutions
[41, 42]. Thus, every composite material, by definition, has
essentially two components, a matrix, i.e. a continuous phase,
which is armored by a reinforcement, i.e. a discontinuous
phase. In cases where there are three or more constituents, the
composite is termed to be a hybrid composite [43, 44].
Composites are available all around us in nature, e.g. wood,
bone, tissue, etc. In industry, most of the composites are
based on metals, ceramics, and polymers [17]. Composites

can be classified in various ways. A useful and all-embracing
classification can be made based on matrix and reinforcement,
as shown in table 2. The MMCs containing reinforcement,
e.g. ceramic particles, whiskers, and fibers, are gaining much
importance these days. The CMCs are considered to be the
newest entrants in the field [45]. In this study, particular focus
is given to micromanufacturing of metallic- and ceramic-
based composite components.

2.3. Metal matrix composites

The need for new materials is constantly important to man-
ufacturing industries. Better mechanical properties, reduced
weight, and lower cost are the key factors for developing new
materials [46]. Since current bulk materials eventually reach
their limits, engineers are looking to composites to obtain
extra strength, stiffness, and durability [47]. Metals and their
alloys are largely manufactured and shaped in bulk form;
however, they can also be intimately combined with another
material in order to improve their performance. The resulting
materials are MMCs [48]. Significant advancement in the
development of MMCs has been achieved over the past few
decades, with their incorporation into important industrial
applications. These pioneering materials have opened up
infinite possibilities for present material science and devel-
opment [49]. The characteristics of MMCs can be designed
into the material, custom-made, and dependent on the appli-
cation [49]. When compared to polymer matrix composites,
MMCs offer improved material properties. For example,
compared to resin, metal matrices provide higher tensile and
shear molduli, higher melting temperature, a lower thermal
coefficient of expansion, better dimensional stability, better
joinability, high ductility and toughness, and the ability to be
fully dense [50, 51]. MMCs essentially consist of a metal or
alloy as matrix material and a reinforcement of different kinds
and shapes. Table 3 presents a detailed classification of
MMCs with typical examples of materials used, their appli-
cations, and fabrication techniques.
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Table 2. Fundamental classification of composite materials [34-44].

Constituent Materials Class

Example

Matrix constituent Organic composites

Metal matrix composites

Ceramic matrix composites
Reinforcement applied  Fiber reinforced
Laminar composites

Particulate composites

Particulate in powder form

Polymer (PMC)
Carbon—carbon

Continuous fiber
Discontinuous fiber

Particulate in flake form

Wood, bone, speed boat, tennis racket

Refractory, hot pressed die, heating element

Piston, crankcase, cylinder, brake

Cutting tool, turbine blade, combustor, wear parts

Woven, stiched mat

Chopped strand mat, oriented strand board

Plywood, furniture, Al-Cu sandwich, WC-steel
bimetal

Body panels, bumpers, dashboards, and intake
manifolds

Cell phone casings, electrical products, computer
housings

Table 3. Matrix and fiber materials used in MMCs and their fabrication techniques.

Main types Typical example Typical application References
Common matrices used Al, Mg, Cu, Ti, Ti aluminides, Ni, Ni aluminides, Ni superalloys, Fe alloys, and intermetallic ~ [47, 51]
in MMCs compounds
Reinforcement used Particulate reinforced Al-ceramic, AlSi-SiC Cast brake disk, brake [52]
in MMCs rotor disc
Short fiber or whisker Al-5% Al,O3 Diesel pistons [53]
Continuous fiber Ti alloy-40% SiC Aero-engine component [54]
Laminate composites SS304-SS420, Al-Cu Layered steel sheet [55]
Liquid state processes Casting or liquid infiltration Al-SiC, Al-A1203, Mg- Bracing, piston rods, frames, [49]
SiC, Mg-Al203, piston and pins
Squeeze casting or pressure AI203-Zr02 fibers with a  Structural component [56]
infiltration Ti-Al matrix
Centrifugal casting Bronze-WC fiber Brake rotors [51]
Stir casting 6061A1-10%SiC Duralcan® components [57]
Solid state processes Diffusion bonding B-Al, Gr-Al, Gr-Mg, and  Spacecraft tubes, plates, and [58]
Gr-Cu panels
Deformation processing
Extrusion Cu-Nb, Cu-YBaCO Superconductor [49]
Drawing Al-glass fiber Laminate cup [59]
Rolling Al-Cu Laminate sheet [60]
Deposition (spraying, CVD, 7Zn, steel, Mo, substrate Corrosion resistant [61]

PVD, plating)

materials

components

Powder metallurgy
techniques

Discontinuously reinforced

WC-Co, Cu-W, Pb-C,
brass-Teflon™

Cutting tools, welding electro-  [62]
des, bearings

2.4. Ceramic matrix composites

Metal and metallic composites have been extensively used in
industry; however, in certain applications, particularly invol-
ving high temperatures, they have reached a limit in their
potential for further development. Ceramics, on the other
hand, offer the advantage of operating at substantially high
service temperatures. In addition, low density, high hardness,
and chemical inertness extend potential ceramic performance
limits beyond those achievable by metallic materials. Never-
theless, ceramic materials have intrinsic limitations of brit-
tleness and poor strength reliability. In an effort to overcome
these drawbacks, significant progress has been reported in the
last two decades. The most important development appeared
in the form of composites, i.e. the combination of multiple
constituent phases with suitable microstructures in order to

obtain the desired properties. Generally, ceramic composites
are composed of two or more distinct ceramic phases com-
bined on a microstructural scale to provide the properties that
cannot be achieved by monolithic materials [63, 64].

In the arena of composite materials, CMCs are con-
sidered to be the latest entrants with a set of impressive
properties and potential applications [45]. Due to advance-
ments in the manufacturing process and technology, a wide
variety of types of CMCs have come into use to meet the
continuously growing industrial demand. These can be cate-
gorized into four major groups: (1) reinforced CMCs, (2)
graded and layered composites, (3) refractory composites, and
(4) nanostructured composites. Similarly, there are a number
of different techniques for manufacturing CMCs, which are
classified based on the materials used, kind of composites,
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Table 4. Matrix and fiber materials used in CMCs and their fabrication techniques [63—69].

Types Subtypes Examples
Matrix Ceramics Single oxides Al,O3, ZrO,, TiO,, MgO, SiO,, SiO,
materials
Mixed oxides Mullite (3A1,03-3Si0,), Spinel (MgO- Al,O3)
Carbides SiC, B4C, TiC
Nitrides BN, Siz;Ny4
Intermetallics NiAl NizAl TiAl, TizAlL MoSi,
Elemental Carbon (C), boron (B)
Glass-ceramics Li,O- Al,05-Si0, (LAS), MgO- Al,03-SiO,, Si0,-Al,03-MgO-K,0-F
Glass Soda-lime, borosilicate, silica, fused quartz
Reinfor- Particulate SiC, TiC, Al,O3
cement
materials
Discontinuous Whiskers SiC, TiB,, Al,O3
fiber
Short fibers Glass, Al,O3, SiC,(AI,O5 + Si0O,), vapor-grown carbon fibers
Continuous fiber  Oxides AlO3, (ALO3 + Si0,), ZrO,, silica-based glasses
Nonoxides B, C, SiC, SizN4, BN
Fabrication Conventional Mixing matrix and fiber
techniques techniques powders, cold press,
and sintering
Hot pressing of CMC
powder mixture
Pressure-assisted hot
pressing
Reaction bonding
Joining (layered compo-
sites): soldering, braz-
ing, diffusion
Hybrid (combining two or
more processes)
Advanced/novel  Infiltration Liquid infiltration
techniques

Directed oxidation
In situ chemical reaction

Others: sol-gel, pyrolysis,
self-propagating high-
temperature synthesis
(SHS), spark plasma
sintering (SPS), pulse
plasma sintering
(PPS), HCDB

Directed oxidation or the Lanxide™ process

Chemical vapor deposition (CVD)
Chemical vapor impregnation (CVI)

typical applications, and fabrication principle. Table 4 sum-
marizes different matrices and fiber materials used in CMCs

and different fabrication techniques with examples.

3. Microforming of composite materials

due to a number of advantages over other micromanufactur-
ing techniques. Process simplicity, better mechanical prop-
erties of the parts, high production rate, minimum material
waste, and net shape characteristics are a few of the advan-
tages [14, 70-73].

Figure 2 presents some microcomponents manufactured
by microforming. A wide variety of material types are used
for microforming, such as aluminum, copper, brass, nickel,

Microforming is one of the popular micromanufacturing
methods, where the traditional metal-forming technology is
scaled down to microscale. Microforming is usually defined
as the forming of components or geometrical features with at
least two dimensions in the submillimeter range. Micro-
forming presents an emerging micromanufacturing technique

titanium, magnesium, and steel. Recently, the use of com-
posite materials has been receiving increased interest. Since
material cost is a major concern in industrial production,
replacing a part of the component with a cheaper material,
while maintaining the desired functions of the part, may save
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Figure 2. Miniature components produced by microforming: (a) microformed parts of various shapes [74] and (b) microdeep drawn parts of
brass and steel [75]. (a) Reproduced with permission from [74]. (b) Reprinted from [75], Copyright (2013), with permission from Elsevier.

significant cost. This, in fact, has generated increasing interest
as a way to reduce the production cost. An example is shown
in figure 2(b), where a brass part is replaced by cheaper steel.
In addition, replacing part of the component with lightweight
materials also results in reduced weight of the component.
Thus, composite materials play a significant role in modern
applications in terms of lower cost, lighter weight, and better
mechanical properties. In this section, various cutting edge
microforming technologies used to manufacture composite
materials are presented as well as their future trends.

3.1. Microrolling of composite materials

Composite materials are popular because of their heavy
industrial use, providing cheaper, lighter, and stronger alter-
natives to monolithic materials [76]. For example, the use of
layered composite materials has recently received significant
attention due to their lower cost and attractive mechanical,
electrical, and magnetic properties. Laminated composite
materials provide customizable properties for specific appli-
cations requiring high impact and fracture resistance [77, 78].
Such composite materials have a uniform distance between
composite layers and are typically fabricated by physical
vapor deposition (PVD) techniques, e.g. magnetron sputtering
[79-81] and electron beam deposition [82-84]. Among
mechanical means, rolling, hammering, and swaging are used
to bond alternating sheets to fabricate a composite. However,
rolling or roll bonding is reported to be one of the popular
methods, due to good potential for commercialization due to
its comparatively simple processing and low cost. Rolling can
also be accompanied by a cold or hot system to customize the
material functionalities. Usually, bottom-up PVD methods
provide more refined and even microstructures while top-
down mechanical techniques produce coarser, nonuniform
microstructures. Nevertheless, uniformity of microstructures
can be controlled to some extent during rolling by choosing
materials with similar hardness and strain hardening rate,
providing uniform layer deformation and reducing layer
pinch-off.

Stover et al [85] fabricated a layered, microcomposite
material of nickel (Ni) and Al using a repeated cold rolling
method with initial billet thicknesses of 25 and 18 um,
respectively. They investigated the effects of thickness
reduction and observed that at higher thickness reduction, less
uniform layer deformation and more pinch-off occurs, com-
pared to more gradual and smaller reduction at lower thick-
ness reduction (figure 3). Eizadjou er al [86] implemented
accumulative roll bonding (ARB) to fabricate an Al/Cu
layered composite at room temperature and demonstrated the
generation of nanostructured layered composite with superior
properties. An increase in the number of passes may result in
equiaxed grains with enhanced hardness [86]. As reported in
[87], the flow stress ratio of two materials should be similar
and chemically stable to achieve good metallurgical bonding
between layers. Adding heat during microrolling can improve
further grain refinement [88]. Another emerging approach is
to add nanoparticles to improve the properties of composite
materials. Yousefian er al [89] used titanium dioxide (TiO,)
nanoparticles and observed significant improvement in tensile
strength of aluminum MMC during microrolling. Thus, there
are numerous techniques that could be implemented to
enhance the properties of composite materials. However, the
choice of materials used for microrolling is still limited,
leading to a considerable scope of future research to attempt
different combinations of materials with a number of potential
future applications. In addition, as the trend is to obtain finer
grain structure by improving material properties, severe
plastic deformation (SPD) could be used to fabricate com-
posite materials. Though there has been remarkable progress
in SPD of bulk materials, their use in composite materials is
limited [90-92]. The application of SPD in microrolling of
composite materials may significantly improve the material
properties and, therefore, deserves further research.

3.2. Microdeep drawing (MDD) of composite materials

MDD is a fundamental microforming process and regarded as
one of the most applicable sheet metal forming processes. It is
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Figure 3. Microrolling of multilayered composite materials: (a) schematic presentation of cold rolling process and (b) microstructural cross-
section image of the rolled Ni:Al laminate composite material. [85] (2013) With permission of Springer.

Table 5. Summary of different micromanufacturing techniques of composite materials.

Techniques Underlying mechanisms Common materials Comments

Microforming Microrolling, microdeep drawing micro- Metals (Al, Cu, Mg, Grain refinement, controlled heat treat-
extrusion, microbending, Ni, Ti, steel) and ment, lubrication and nanoreinforce-
microcompression metallic alloys ment can improve formability

Micromachining Drilling, milling, shaping, turning nontradi- Metals, ceramics, Reinforcement size and bonding strength
tional machining alloys, MMC, CMC of fiber/matrix is crucial

Microcasting Investment microcasting, permanent mold Metals, alloys, and Composite casting is an emerging
microcasting, composite microcasting ceramics technique

Microinjection Conventional hybrid Metals and their Ability of mass production; however,

molding alloys many factors are still to be examined
Microjoining Solid-state diffusion bonding, diffusion sol- Metals, metallic Provide a permanent connection of

dering and brazing microwelding, bonding
using nanoparticles, and metal /ceramic
bonding

alloys, ceramics,
MMCs, CMCs

similar or dissimilar materials directly
or by employing an interlayer

widely used in many industries to produce microcomponents,
such as microcylinder cups, rectangular cups, conical cups,
spherical cups, hollows, and box-like parts [76, 93]. However,
most of these microcomponents are made from bulk materi-
als. Limited attention is paid to MDD of composite materials,
though composite materials exhibit a number of attractive
properties, as stated earlier. Laminated composite materials,
for instance, can be used in manufacturing parts with different
inner and outer conditions, such as corrosion, wear resistance,
and thermal and electrical conductivities [94-96].

MDD of composite materials appears to be more com-
plex than conventional forming methods. There are several
associated parameters which cause problems. A number of
defects may occur in the drawn parts, which must be accu-
rately addressed and properly controlled to reduce the number
of no-go parts as well as production costs. The parameters
taken into account during MDD of composite materials
include blank holding force (BHF), applied punch force,
material properties of the blanks, thickness of the blanks,
stacking sequence of the blanks, velocity of the punch,
lubrication, and temperature conditions. In addition, the type
of reinforcement used and its shape and size are also

important. These factors are responsible for affecting the final
products and can regulate the wrinkling effect, tearing effect,
and fracture defects.

Many of these parameters are thoroughly discussed in
conventional deep drawing as well as MDD of monolithic
materials; however, they are not as developed in the case of
composite materials. Jia et al [76] examined the effect of
heating during MDD of 50 um of an Al-Cu composite mat-
erial (figure 4) and successfully fabricated a microcup without
considerable fractures or wrinkles. Another important para-
meter is BHF, as reported in [94], which discusses MDD of
an Al 1050 and stainless steel (SS) 304 laminate composite.
Yin et al [18] examined the MDD of a cobalt (Co)-Al-Cu
laminate composite and observed that an increase in holding
time during heat treatment can improve the properties of the
formed parts. Consequently, the interaction between the die
and specimen plays a significant role in MDD of composite
materials. The formability can also be greatly influenced by
employing appropriate lubrication. Nanoparticle-based oil
lubricant can improve drawability and reduce the forming
load of composite materials, as observed in [93], which dis-
cusses MDD of an Al-Cu composite material. There has been
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Figure 4. Microdeep drawing and drawn parts: (a) desktop servo press machine DT-3AW and (b) observation of the microdeep drawn parts

of an Al-Cu layered composite material.

some progress in MDD of composite materials; however, the
literature still does not describe the interfacial behavior of
different laminates and/or matrix-reinforcement interactions
during the course of MDD. The material flow characteristics
of different layers (prevention of defects, e.g. wrinkling and
fractures) during MDD needs to be acutely analyzed.
Investigation of the stress and strain distribution of the drawn
composite parts also requires further research to develop this
promising field.

3.3. Other techniques for microforming composite materials

In addition to the aforementioned microforming techniques,
microextrusion, microstamping, microbending, micro-
embossing, micropunching, microblanking, and microcoining
are also attracting attention in the forming of microproducts
that have a variety of applications. However, not all of these
techniques have been implemented in the manufacturing of
composite-based microproducts. Examination of the potential
for using the above techniques to fabricate microparts from
composite materials is clearly lacking [97-104]. However,
there have been some innovative microforming methods
reported in recent years for the fabrication of composite parts.
Patel et al [105] reported a novel microblast-driven micro-
forming method and fabrication of a bismuth oxide
(Bi,0O3)-reinforced Al composite micropart. A mathematical
model and critical forming processes have also been pro-
posed. Bending and contact strengths of a carbon-reinforced
silicon nitride-silicon carbide (SizN4-SiC) composite were
examined by Dusza et al [106] and its fracture mechanisms
were illustrated. Cui et al [107] fabricated a microlaminated
titanium boride-titanium aluminum (TiB-TiAl) composite
sheet by employing a multistep heat treatment and pressing
process. Zhang et al [108] conducted a simulation of a tin
oxide/silver (SnO,/Ag) particulate-reinforced MMC through
microextrusion. The effects of the extrusion angle, the
extrusion ratio, and the ram speed on the deformation and
redistribution of particles during microextrusion were studied
using the finite element (FE) method. When composite
materials are microformed, the scenario may generally appear
different than that of conventional techniques. The deforma-
tion behavior of reinforcement (particle distribution) used in
the matrix plays a significant role in microforming. The size

and type of reinforcement used and its interaction with the
matrix material and tools may be a matter of substantial
significance, which needs to be thorougly investigated.

4. Micromachining of composite materials

Even though composite materials are processed near net
shape, further machining operations are generally inevitable
to ensure the accurate function for the application. Since the
cutting/machining mechanism for composite materials is not
well understood yet, experimental study to reveal the nature
of the cutting behavior of composite materials requires sig-
nificant experimental tests. To improve the proficiency of
experimental works and extract more information, exper-
imental methods have been designed to study the machin-
ability of composite materials. A Taguchi-method-based
experiment was studied during the machining of Al
[109, 110] and hybrid MMCs [111]. Another approach is
response surface methodology, as reported in [112] for cut-
ting forces and in [113] for surface roughness. In addition, FE
methods are also used to investigate the cutting mechanism of
composite materials, as reported in [114], to examine the
cutting mechanism of SiC/Al MMCs. In this section, various
factors that influence effective micromachining of composite
materials are discussed. In addition, some advanced non-
traditional techniques that are used for micromachining of
composite materials are also illustrated.

4.1. Factors affecting the machining of composite materials

The microstructure and grain distribution of composite
materials play a significant role in the machining of composite
materials. The grain size of commonly used engineering
materials subject to micromachining falls in the range of
100 nm—100 pm [115, 116]. The radius of the tool edge (i.e.
roundness) and feed rate value are frequently considered to be
in the range of several hundreds of nanometers to several
micrometers, which is also comparable to crystalline grain
sizes. Therefore, the influence of grain size, grain distribution,
and overall crystallographic nature of the composite materials
plays a crucial role in micromachining, as detailed in
[115, 117, 118]. It has been reported that a homogeneous
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Figure 5. Finite element analysis model setup for orthogonal aluminum-based MMCs reinforced with (a) nanosized SiC particles and
(b) microsized particles. Reprinted from [114], Copyright (2018), with permission from Elsevier.

grain size distribution has a positive effect on better dimen-
sional accuracy and high surface quality. The influences of
metallurgical phases on cutting forces were studied by Vogler
et al [119]. An FE model was proposed in [120-122] to
evaluate the stress, strain, temperature, and damage distribu-
tion due to changes in grain size and grain distribution.

Another important parameter is the reinforcement used in
a composite. Because of the presence of particulates/fibers,
the material removal rate and chip formation mechanism
appear differently in composite materials. Teng et al [114]
carried out an FE simulation for the cutting mechanism of
SiC/Al MMCs reinforced with micro- and nanosized parti-
cles using the FE method (ABAQUS). They reported that
nanosized particles remained intact without fracture during
the machining process and were more likely to produce
continuous chips, in contrast to microsized particles that were
easy to break and tended to form discontinuous chips
(figure 5). Thus, a better machined surface quality with less
defects can be obtained from nanosized, reinforced MMCs
compared to their microsized counterparts. Based on the lit-
erature surveyed, the machining mechanism for composite
materials is not yet fully understood, especially for micro- and
nanoparticle-reinforced composites. Further investigation
(theoretical and experimental) is required to reveal the fun-
damentals of micromachining of composite materials, in
terms of stress and strain distribution, tool wear, failure mode,
chip formation, and particle behavior.

Another important factor is the effect of strengthening.
Machining is principally a process where materials are con-
tinuously or discontinuously fractured and then driven away
under comprehensive fracture criteria [123]. The improved
mechanical properties of composite materials, such as yield
strength and toughness, considerably influence the material’s
fracture characteristics. Several authors have attempted to
estimate the reinforced yield strength by virtue of different
strengthening mechanisms [124—126]. There are three key
strengthening mechanisms: (1) Orowan, (2) increased
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dislocation density, and (3) load-bearing strengthening
[124-128]. Zhang et al [124] proposed a model to predict the
yield strength of nanoparticle-reinforced MMCs and revealed
that the increased yield strength is governed by a number of
factors, such as size and volume fraction of nanoparticles
used, the difference in CTE values between the fiber and
matrix, and the change in temperature after processing. A
mathematical equation proposed to predict the increased yield
strength is shown in equation (1):

Oye = Oym (1 + fOrawan ) ( 1+ f(‘iislocation ) ( 1+ fl‘oadfbearing)’
(1

where oy, is the yield strength of the matrix material, and
fOrowan’ ft‘iislocatiun’ and floadfbearing represent the aforemen-
tioned three strengthening mechanisms.

However, when dealing with practical conditions, the
process of material removal appears much more intricate
because of the complicated microstructural effects and cannot
be explained by only yield strength. Therefore, further study
is necessary to understand the fracture mechanism and chip
formation during machining of composite materials
[123-132].

Components made from laminate composites often need
to be microfeatured through various machining operations,
such as microperforation, microsawing, microrouting, and
microgrinding. However, microperforation, or making a hole,
is perhaps the most important and frequently used machining
technique in laminated components [133]. Delamination may
appear during machining of laminate composites which
results in severe reductions in the load-carrying capacity of
the component and, therefore, must be avoided. Delamination
not only decreases assembly tolerance and bearing strength
but also has the potential for long-term performance dete-
rioration under fatigue loads [134—136]. Delaminations may
be initiated by three mechanisms, as shown in figure 6:
peeling up of the top layer, punching out of the uncut layer
near the exit, and the thermal stress mode [137, 138]. Peel-up
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Figure 6. Effect of delamination in machining of laminate composite materials: (a) entrance or peel-up delamination, (b) exit or push-out
delamination, and (c) simplified model. Reprinted from [138], Copyright (1992), with permission from Elsevier.

delamination occurs around the entry periphery of drilled
holes (figure 6(a)). When the drill edge contacts the surface, a
peeling force through the slope of the drill bit flutes results in
separation of the plies from each other. Push-out delamination
occurs at the exit periphery around the drilled holes
(figure 6(b)). Thermal stress mode appears due to the heat that
is generated during drilling because of the high-speed tool-
specimen contact (figure 6(c)). It has been found that the
delamination associated with push-out is more severe than
with other mechanisms. Henceforth, most of the studies have
paid more attention to push-out delamination [139-144].

4.2. Nontraditional machining of composite materials

In many cases, micromachining of composite materials using
conventional techniques or tool materials is difficult due to
the presence of the abrasive reinforcing constituents, which
may cause several problems, such as delamination, poor
surface quality, and severe tool wear [145, 146]. Furthermore,
conventional material removal methods often introduce sur-
face flaws, cracks, and residual stresses in composite mate-
rials [146, 147]. In some cases, such as difficult-to-machine
parts and ceramic-based brittle-like composites, conventional
techniques fail to provide the desired machining performance.
Many such limitations were overcome by the advent of
nonconventional micromachining techniques. At present,
there are a number of different nonconventional micro-
machining techniques being extensively used in many
industrial applications, such as laser, electrical discharge
machining (EDM), electrochemical machining (ECM), abra-
sive jet machining, and microgrinding. These processes are
used to perform precision machining of composite materials
where the material removal process is not affected by hard-
ness, strength, or toughness of the specimen materials
[148, 149].

Laser micromachining is an important modern technology
for machining difficult-to-machine composite materials. Lie
et al [151] produced holes of a few hundred micrometers in
diameter in SiC/SiC composite using a picosecond laser. This
was also done by Biswas ef al [145] to microcut Al;O3-Al
composite. Wang et al [150] combined laser heating with
conventional machining for cutting silicon copernicium
(SiCp)/2024 Al composite. Figures 7(a) and (b) present some
typical examples of laser machining. Similarly, EDM is also
used to machine parts made of composite materials. In this
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process, no mechanical force is applied; and it is independent
of the specimen’s hardness. Li et al [152] produced microholes
in zirconium diboride (ZrB,)-SiC-graphite composite using
EDM. Paul er al [153] investigated microdrilling of newly
developed SiC-20% boron nitride composite. Similarly several
authors examined EDM micromachining of composite mate-
rials, such as SiCp-Al [149], SiC-titanium carbide nitride
(Ti,CN) [154, 155], and SiC/Al [147]. Consequently, ECM
was reported to be one of the most suitable processes for dif-
ficult-to-machine materials without a heat-affected zone. This
process has been well exploited in various applications,
offering a higher machining rate, better precision, and good
control over the machined surface [156, 157]. Examples
include machining a 400 pm hole in Al-Al,Os-boron carbide
(B4C) hybrid MMCs [158], AA6061-titanium diboride (TiB,)
[157], and Al-6% MMCs [159]. For machining glass and glass
fiber-reinforced plastic (GFRP) composites, abrasive jet
machining could be a suitable technique, as reported in [160].
Likewise, ultrasonic grinding is a preferred method for
machining ceramic-based composites, as reported by Zhao et al
[161], and grinding Al,Os-zirconia (ZrO,). Although the above
results present various techniques for micromachining of
composite materials, the fundamental mechanisms are not yet
well understood [39, 40]. In addition, studies on the machin-
ability of microreinforcement composite materials are plentiful;
and there is inadequate literature on nanoreinforced composite
materials. Therefore, further research is necessary to gain a
comprehensive understanding of nanoreinforcement of com-
posite materials.

5. Microcasting of composite materials

Microcasting, also known as microprecision casting [162], is
one of the key micromanufacturing technologies, enabling the
fabrication of miniature components. The technology has
been successfully implemented to produce miniature parts in
surgical instruments, dental devices, biotechnology instru-
ments, and mechanical devices [163]. Microcasting is usually
identified as an investment casting process, such as lost-wax
and lost-mold techniques [164]. The advantages it offers
include near net shape, complex parts, low materials loss, and
quick production [165]. Other methods of microcasting
include permanent mold and composite microcasting. In



Int. J. Extrem. Manuf. 1 (2019) 012004

Topical Review

(b)
. Ve
Laser beam Cutting
insert /
SiCp/2024Al
/ 5pum
v /
z¥ wx

Figure 7. Nonconventional micromachining of composite materials: (a) cross-sectional schematic diagram of the laser microcut workpiece
[145] and (b) schematic view of laser-assisted micromachining (LAMM) [150]. (a) Reproduced with permission from [145]. (b) [150] (2018)

With permission of Springer.

Figure 8. Permanent mold casting, (a) steel mold for gear wheel with milled cavity, (b) gear wheel cast with Al bronze in evacuated chamber
(mold temperature of 280 °C), (c) graphite mold with milled structures (broad cross runner); and (d) Al bronze casting in permanent graphite
mold. Three cracked graphite parts from the mold remained inside at mold temperature of 400 °C. [164] (2011) With permission of Springer.

permanent mold casting, the research is focused on finding
suitable metal or graphite molds for casting miniature parts;
while in composite casting, the focus is on connecting or
assembling two different materials or structures [164].

The research focus on investment microcasting consists
of finding appropriate casting parameters [162], an attainable
aspect ratio [166], surface roughness [167], suitable pattern
design [168], relationship among microcasting parameters,
microstructures and mechanical properties [169-173], and
analytical simulation [174]. However, investment casting
produces a rough surface [167]. To overcome this drawback,
permanent mold casting was introduced. However, this pro-
cess is limited to low melting alloys, e.g. Al, magnesium
(Mg), zinc (Zn), tin (Sn), and lead (Pb) [175, 176]. Baume-
ister et al [164] carried out permanent mold microcasting of
Al-bronze using both metal (steel) and ceramic (graphite)
molds and fabricated microgears of a few millimeters, as
shown in figure 8. The method presented is still in the primary
stage, due to its millimeter range; however, it can be imple-
mented in practical production line conditions. Therefore, the
application of permanent mold microcasting is of practical
significance and deserves further research.

Another emerging micromanufacturing technique is
composite casting for the production of complex-shaped
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microparts or microsystems consisting of different metals and
ceramics. The major advantage of this method is the ability to
fabricate multicomponent parts in one step without the use of
any joining or assembling processes. The selected material
combinations can fulfill intricate functionalities and improved
mechanical properties. It is also possible to fabricate com-
ponents with movable connections without an additional
assembling step after casting. Ahmeti ef al [177] examined
metal-ceramic-composite casting of Al-bronze and ZrO,
ceramic. Two kinds of compounds were made: casting around
the ceramic microparts with Al-bronze to fabricate a force-
fitting compound, (similar to that in figure 9(a)) due to the
different coefficients of thermal expansion (CTEs) of the
materials used, and then allowing the shrinkage of Al-bronze
from casting to room temperature. The casting into ceramic
microcomponents, such as wheels, to form a compound with
movable connections is shown in figure 9(b). However, one
of the major challenges still remaining with composite casting
is the ability to produce stable mechanical bonding between
dissimilar materials. This drawback could be minimized by
choosing appropriate combinations, by considering their
physical properties, e.g. CTE, and wettability in order to form
a force-fitting microsystem. Further works could be focused
on improving the production system by extending the variety
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Figure 9. Typical example of composite casting: (a) metal-metal composite casting of Al-bronze around a drill made of high speed steel at
800 °C (drill diameter of 1 mm) [164], and (b) fabrication of moveable shaft-to-collar connections by composite casting of a ZrO, ceramic
gear wheel into an Al bronze shaft at 1000 °C. [177] (2013) With permission of Springer.

Figure 10. Typical examples of microinjection molding of composite materials: (a) SEM micrographs of microcolumn array of W-30 wt% Cu
composite materials sintered for 5 h at 1050 °C (surface microstructure at corner) [183], and (b) microencoder composite made of a
nonmagnetic steel (316 L) and a ferromagnetic steel (17-4PH), green (left) and sintered parts (right), and microstructure (corner) [182].
(a) [183] (2005) With permission of Springer. (b) Reproduced with permission from [182].

of materials for microcomposite casting and the character-
isation of mechanical properties.

6. Microinjection molding of composite materials

Injection molding is a well-known technique for manu-
facturing near net-shaped products. The unique features of
this process include mass production, cost effectiveness,
ability to produce complex-shaped parts, and the use of var-
ious kinds of materials, including composite materials. To
take advantage of these features, microinjection molding has
been established as a promising route to the mass production
of miniaturized components. However, although this process
has been massively adopted for polymeric materials, its use
for metal/ceramic-based microcomponents has been limited.
Liu ef al [178] reported a method called micropower injection
molding («PIM) and showed the possibility of implementing
this method for producing metal or ceramic micro-
components. Merz et al [179] fabricated microgears and
tensile test bars of a few hundred microns and made of ductile
ZrO, and hardenable stainless steel, respectively.
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Microinjection molding is the miniaturization of the tradi-
tional injection molding process; and it inherits the features of
traditional ones in terms of low production cost, near net shape,
geometric complexity, good tolerance, and reproducibility
[180-182]. To date, the majority of microinjection molding
processes have been based on the manufacturing of monolithic
metal or ceramic materials. The exploration of this process for
the fabrication of composite materials has just commenced.
Kim et al [183] conducted a fundamental study on fabricating
metal-based composite materials (figure 10(a)), as was done in
[180] for WC-Co composites. Likewise WC-Cu and 316 L and
17-4PH composite materials were used by Kim et al in
[184, 185] (figure 10(b)), respectively. Some hybrid techniques
have also been reported, as mentioned in [186], using a laser
micromachining technique to manufacture microcomponents of
stainless steel and ZrO, composite materials.

Although studies have already revealed the viability of
manufacturing microcomponents made of composite materi-
als using microinjection molding, the research and develop-
ment in this field is still at its embryonic stage and many
shortcomings need to be investigated. In addition, compared
to traditional methods, microinjection molding has intrinsic
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Figure 11. Typical examples of microjoining: (a) cross-wire microwelding of nickel titanium (nitinol) cross-wire joint [213] and (b) BSE
image of the cross-sectional microstructure of Si chip-to-Cu joints using composite Ag nanoparticles bonded at 573 K with a bonding
pressure of 2.5 MPa [214]. (a) Reproduced with permission from [213]. (b) Reproduced with permission from [214].

challenges because of the submicron or nanopowders used as
raw materials; and the accuracy is in the micronscale [187].
However, the advancements in automation and control tech-
nology, together with improved tooling accuracy, may mini-
mize the deviation of the final products and the difficulties
arising from production in the future.

7. Microjoining of composite materials

Joining (at macro-, micro-, or even nanoscale) has become an
important part of today’s manufacturing and assembly pro-
cess, providing components with multifunctional abilities.
Successful microjoining appeared to be one of the very
essential techniques for manufacturing composite parts at
ever-smaller scales. It has been used extensively in many
fields, such as microelectronic packaging and interconnection,
medical implants, batteries, sensors and transducers, and
optoelectronics [188]. There is a continuously growing need
to join nanoscale building blocks, for example, nanowires and
nanotubes, with micro- and mesoscale devices [189, 190].
Due to ever-advancing miniaturization, microjoining is con-
stantly facing new challenges. The prime target for joining
methods is to provide a permanent connection between parts
and/or building blocks through an effective chemical or
mechanical bonding. An interlayer might also be incorporated
when the individual parts are not compatible in atomic
structure, e.g. a ceramic/metal joining. A number of different
techniques are reported to join components in microscale.
This include microelectronic wire bonding [191, 192], solid-
state diffusion bonding [193, 194], bonding using nano-
particles [195-197], diffusion soldering and brazing
[198, 199], laser microwelding [200-202], electron beam
microwelding [203, 204], resistance microwelding [205, 206],
adhesive  bonding [207], ceramic/ceramic  bonding
[208-211], ceramic/metal bonding [40, 212], and so on.
Figures 11(a) and (b) show typical examples of microjoining
of similar and dissimilar materials, respectively. A good
understanding of microjoining, in many cases, requires mul-
tidisciplinary knowledge from various fields, i.e. materials
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science (metallurgy), solid and fluid mechanics, physics,
chemistry, and electrical engineering and electronics. Sim-
plicity in design, easy control, and higher bonding quality will
be some of the aspirations of future research work in the field
of microjoining.

8. Other micromanufacturing techniques of
composite materials

A summary of different micromanufacturing techniques of
composite materials is presented in table 5. In addition to
these micromanufacturing techniques, laser-based hybrid
techniques, additive micromanufacturing, advanced sintering
processes (e.g. hot isostatic pressing, spark and pulse plasma
sintering), and soft lithography are also attracting substantial
attention for use in fabricating microproducts made of com-
posite materials. Recently, staged achievements have been
made in laser-based micromanufacturing, including laser
additive manufacturing [215, 216], selective laser melting
[217, 218], laser microstructuring combined with micro-
lithography [219], laser raster scanning [220], and laser sur-
face engineering [221]. Obuh et al [219] proposed a low-cost
micromanufacturing method based on laser microstructuring
and noncleanroom microlithography techniques and fabri-
cated MEMS switches and varactors. MEMS movable
structures were fabricated out of 14 pm thick aluminum foils
that were suspended via 5 um thick SU-8 dielectric anchors
(figure 12(a)). Gu et al [215] fabricated a WC-reinforced iron
(Fe)-based MMC using laser additive manufacturing. Hassa-
nin et al [222] fabricated a multilayer, functionally graded
microceramic microgear component made of Al,O; and
ZrOyusing soft lithography, without any significant crack at
the joining area.

Another important advancement in micromanufacturing of
composite materials is additive manufacturing. Currently, there
are a number of research studies that are focused on these
techniques. Li et al [223] fabricated Cu and Cu-Ni-alloy-rein-
forced Fe-based metallic glass composite microcomponents
using 3D additive manufacturing. Similar techniques were
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Figure 12. Typical examples of some advanced micromanufacturing methods for composite materials made of microparts: (a) 3D model with
cross-sectional view of MEMS switches fabricated by laser microstructuring and noncleanroom microlithography [219]; and (b) SEM image
of functionally graded microceramic microgear component made of alumina and zirconia using soft lithography [222]. (a) © IEEE.
Reprinted, with permission, from [219]. (b) Reprinted from [222], Copyright (2018), with permission from Elsevier.

adopted in [224] to fabricate microparts made of Ti alloy
composites with TiB discontinuous reinforcement using selec-
tive laser melting, in [225] to manufacture Al matrix composite
microparts, and in [226] to fabricate microparts made of
TiB,-reinforced 316 L SS. A detailed review of 3D micro-
additive manufacturing techniques can be found in [227].
Franchin et al [228] introduced a method called direct ink
writing to manufacture CMC microcomponents. Alias et al
[229] used low-temperature, co-fired ceramic technology to
fabricate a laminate composite material of glass and ceramic.
These recent developments indicate that there is a common
trend of developing new methods and techniques combining
multiple manufacturing processes. These modern hybrid tech-
niques show the possibility of manufacturing microparts made
of various types of composite materials, including fiber/parti-
cle-reinforced, laminate, and functionally graded materials; and
thus, they deserve further research.

9. Key factors in micromanufacturing of composite
materials

Due to the extensive demand for microcomponents in modern
applications, their manufacturing techniques have received
ample attention by numerous scholars. Scaling down various
parameters of a conventional manufacturing process from
macroscale to microscale is a well-known strategy. However,
although the advancement of micromanufacturing technology
can benefit from a comparatively mature scientific back-
ground, there are certain issues that cannot be mechanically
copied from traditional manufacturing, and these also distin-
guish between them. Consequently, when dealing with the
manufacturing of composite materials, there are additional
factors, such as fiber/matrix interaction, that appeared during
the scaling down to microscale. In this section, some of the
key issues related to the micromanufacturing of composite
materials are addressed.
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9.1. Size effects

Size effects can be generally defined as the deviations from the
expected results which occur when the geometrical dimension
of a process or specimen is changed or typically reduced [230].
There are three main categories of size effects based on density,
shape, and microstructure [230], as presented in figure 13.
Accordingly, in microforming, there is another type of size
effect called the tribological size effect [14]. These size effects
generate a number of different problems, including mechanical,
tribological, and scatter of material behaviors, which have been
extensively studied by many authors [73, 231]. Subsequently, in
order to deal with size effects, various strategies have been
reported, such as microstructural refinement [103] and applying
heat during micromanufacturing [232]. Size effects in compo-
site materials appear to be even more serious; particularly the
size and amount of reinforcement used in the composite which
are important factors, as detailed in Wisnom et al [233]. It was
reported that there is a tendency for the strength to decrease
with increasing specimen volume. It was also found that the
size effect reduces with increasing scale. However, scaling laws
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in composite materials are not straightforward, rather they are
substantially intricate due to the heterogeneous nature of their
microstructures involving variations in fiber diameter and
length, fiber/matrix interface, ply layer, free edge effects, and
stress gradients. Size effects in composite materials also depend
on the length and diameter of fibers, their volume fraction, and
the manufacturing technique used [234, 235]. Presently, a major
worldwide research effort is underway regarding the possibility
of producing very high-strength composites in fiber, whisker, or
laminate form. A significant diameter size effect in such com-
posites might well provide a complementary avenue for
improved strength properties by obtaining finer filaments.

9.2. Interfacial behavior

The characteristics of a composite material can be attributed
to three main factors: (1) the reinforcing element or fiber, (2)
the matrix material, and (3) the fiber/matrix interface. The
fiber/matrix interface in composite materials is of great
importance as the internal surface area occupied by the
interfaces is considerably high. For example, for a composite
material containing a moderate fiber fraction, it can be as high
as 3000 cm? cm ™3 [51]. The factors that influence the inter-
face area in a composite include surface roughness of the
reinforcements (most fibers or reinforcements show some
degree of roughness [236]), crystallographic nature of the
interface, and interactions at the interface. Figure 14 shows a
typical example of an interface of a composite material. The
bonding that takes place at the interface can be of the
mechanical, physical, or chemical type. It should be noted
that maximizing the bond strength is not always the objective.
If the interface is too strong, i.e. stronger than the reinforce-
ment, it will cause embrittlement; and the interface will have
the lowest strain to failure. Therefore, an interface with an
optimum interfacial bond strength is preferred with an
enhanced toughness but without much sacrifice on the
strength parameters. Optimum interfacial bond strength can
be obtained in two ways: treatment of the fiber or reinforce-
ment surface or modification of the matrix composition.
Therefore, during micromanufacturing, close attention should
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be given to make sure the optimum interface strength is
maintained in order to obtain the desired quality of the
composite materials.

10. Experimental demonstration

In order to demonstrate the potential of micromanufacturing
of composite materials, a bimetallic composite of cemented
WC and high strength steel was fabricated. A novel micro-
manufacturing approach was implemented, namely HCDB. In
this process, the simultaneous effects of heating and pres-
surizing were combined. Heat was generated by electrical
resistance through Joule effects by flowing an electrical cur-
rent across the electrically conductive samples. The experi-
ment was conducted in a Gleeble® 3500 thermomechanical
simulator. The Gleeble 3500 is a powerful machine capable of
executing a number of experimental operations with highly
precise control in a high vacuum environment. In this process,
the current passed through the powder compact in single or
multiple pulses resulting in very short processing times
causing a rapid binding between individual powder particles.
Thus, coalescence of powder particles happened very quickly.
In addition, obtaining the full density of the powder resulted
in progressive pressure. Consequently, carbide particles
interacted with steel at their interface at elevated temperatures
and pressure, resulting in elemental interdiffusion between
them. This eventually led the WC-10Co to bond with the
AISI 4340 steel, and a bimetallic composite of ceramic and
steel was achieved. The effects of various experimental
parameters, such as sintering time, compression pressure, and
sintering temperature, were analyzed to optimize the operat-
ing conditions. Figure 15 shows the cross-sectional
micrograph of the bimetal composite obtained at a temper-
ature of 1250 °C, with a compression pressure of 160 MPa
and sintering time of 20 min.

As can be seen in figure 15, good bonding between the
ceramic and steel materials was achieved. The mechanical
properties of the bimetal composite were determined by the
evaluation of microhardness across the specimen and mea-
surement of the bonding shear strength. It was revealed that
powder-solid bonding, based on the HCDB technique, pro-
motes mutual interdiffusion of alloying elements thus con-
tributing to the fabrication of a cermet-metal bimetallic
composite with fair bonding. However, the interdiffusion of
elements was not significant at lower experimental config-
urations (i.e. sintering time, compression pressure, and
temperature). By increasing these parameters, bonding can be
enhanced. The maximum bonding strength achieved was
223 MPa, with 98% density of the sintered carbide (relative to
the theoretical density) and a microhardness of 2272.3 HV at
1250°C. The WC-10Co/4340 steel bimetal composite
developed has substantial potential to be used in applications
where high hardness and high strength are simultaneously
necessary.
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sintering time.
11. Simulation and modeling of composite materials

Metal and CMCs are replacing other bulk materials in
applications where the higher costs are offset by enhanced
performance. Due to the lack of a clear understanding of the
reinforcement/matrix behaviors, it is necessary to apply a
trial and error method to successfully fabricate the composite,
which is often very expensive. Therefore, to take the benefit
of the potential of MMCs and CMCs and to reduce the risks
of unwanted component failure, modeling and simulation
tools, such as finite element analysis (FEA), come in handy
for nondestructively estimating material performance at
operating conditions and temperatures. Finite element analy-
sis can be used to evaluate mechanical properties, such as
interlaminar shear properties, cumulative damage failure, and
crack propagation [237]. In this section, we present some of
the recent developments for examining and validating the
design, mechanical properties, and failure modes of compo-
site materials using FEA during micromanufacturing.

11.1. Simulation of micromanufacturing for composite
materials

In composite materials, residual stresses (RSs) can be gen-
erated by thermal mismatch between the reinforcement and
matrix materials or between alternating sheets during the

17

manufacturing process. It may severely impact the strength-
ening of microcomposite components. Therefore, unlike
conventional methods, micromechanics-based simulation
methods are preferred for developing a comprehensive ana-
lysis of the effects caused by thermal RSs during the manu-
facturing of microcomposites. It is reported that thermal RSs
can considerably decrease the yield strength and ultimate
tensile strength of composite materials. Therefore, con-
sideration of thermal stresses is essential for a realistic pre-
diction of the overall elastoplastic characteristics of composite
materials during micromanufacturing [238].

Haghoo et al [239] conducted a simulation on carbon
nanotube (CNT)-reinforced Al composites. The variables
considered included fiber volume fraction (FVF), aspect ratio
and directional behavior of CNTs, degree of CNT agglom-
eration within the matrix on the elastic modulus, thermal
expansion behavior, and the overall elastoplastic response of
CNT-reinforced Al composite materials. Aghdam et al [240]
simulated the influences of manufacturing parameters and
FVF on residual stresses in SiC/Ti composites. The effects of
the coating, interaction layer, and stress relaxation were also
considered. As can be seen in figure 16, a 3D representative
volume element (RVE) consisting of a quarter of fiber,
coating, interaction layer, and corresponding matrix material
was used to evaluate RSs within the MMC. Stress contours
for the axial stress distributions in the fiber and matrix of a
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Reproduced with permission from [93].

SiC/Ti-alloy composite system are plotted in figures 18(c)
and (d). Dimensions of the constituent of the RVE were
obtained by calculating the fiber volume fraction using the
following equations:

R2
Ry =Ry — 1), 3

where v and v, are the fiber and coating volume fractions,
respectively, R; and R, are the outer and inner radius of the
coating, and a denotes the width of the RVE, as shown in
figure 18.

Jia et al [76] developed an FE simulation model to
examine the deformation behavior of a two-layer Al-Cu
composite (~50 pum thickness) during MDD by employing a
continuum shell element in ABAQUS software (figure 17).
The Voronoi tessellation model was introduced to represent
the grains of the laminate composite material for addressing
the size effects of the blank during micromanufacturing. Each
Voronoi tessellation was assigned with different mechanical
properties based on experimental data, thereby conserving the
grain heterogeneity. Therefore, accurate results can be
obtained [241, 242]. Application of nanolubricants during
MDD of an Al-Cu composite was investigated in [93], and
significant improvement in the formability of the drawn parts
was reported. Adding nanolubricant also reduces the drawing
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force, providing more uniform thickness distribution, and
improves the surface quality of the microcomponent drawn.
According to the literature reviewed, the existing simulation
works are mostly based on microforming techniques, parti-
cularly microrolling and MDD. There are also a few research
studies on various composite materials, including MMCs and
CMCs, to evaluate fiber/matrix interactional behaviors during
their manufacturing processes. However, a limited number of
studies were observed to simulate other micromanufacturing
techniques, such as micromachining and microcasting of
composite materials. This leads to a substantial scope of
further research, with numerous possibilities for obtaining
exciting results to solve many of the practical problems.

11.2. Modeling of an innovative micromanufacturing method for
composite microdrill

A composite of WC and high strength steel could be devel-
oped to manufacture a composite microdrill (CMD) with
outstanding overall performance. The outer WC with nano-
crystalline grains can offer high hardness, wear-resistance,
and rupture strength, while the inner steel material could
provide high strength and fracture toughness. A direct pow-
der/solid, consolidation-extrusion forming technology could
be implemented to fabricate a CMD. The schematic diagram
of the proposed microextrusion system is presented in
figure 18. Die 1 will be used for powder solidification and
extrusion forming, while dies 2 and 3 will be used to fabricate
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the CMD. Dies 2 and 3 will be removable and could be
disassembled conveniently when the extrusion process is
complete. The values I, [ and D represent the shank length,
flue length, and diameter of the CMD produced, respectively.
Microdrills several hundreds of micrometers in diameter will
be produced. Die 3 will be rotatable and is designed as split
construction with cutting grooves because of the undercut on
the part during the extrusion process. Die 3 will be designed
based on the flute structure of the CMD produced.

In addition, FE modeling could be employed to simulate
the behavior of WC powder and the bonding phenomena with
high strength steel. Constitutive relationships that describe the
behaviors of both materials during solidification could be
included in the FE model. Because the material properties of
the steel and WC are very different, nonuniform deformation
will occur during the composite extrusion processes. Conse-
quently, in microextrusion, the size of the deformation zone is
comparable to the size of constituent grains; and, therefore,
grain orientation has an impact on strain distribution. Each
single grain has to deform not only in accordance with the
shape of the tool but also its favorable orientation. The ran-
dom orientation and size of each single grain leads to inho-
mogeneous material behavior, so that scatter increases with
decreasing specimen size. Therefore, a careful consideration
of these parameters is necessary for successful simulation as
well as experimental investigation to fabricate such a micro-
product, due to future evolutionary prospects.

12. Conclusions and recommendations

In this study, we presented the potential for micro-
manufacturing composite materials. Although there are many
research studies on individual micromanufacturing techniques,
as well as composite materials, there is no comprehensive lit-
erature that reviews the state-of-the-art micromanufacturing
techniques of composite materials. Since monolithic materials
have already reached their limit, composite materials represent
an emerging future in which composites will have many
industrial applications, particularly where superior material
properties are required. Fabricating composite materials in
microscale is a challenging task. Unlike conventional materials,
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composite materials require precise consideration of a number
of factors when they are micromanufactured. In this study, the
existing micromanufacturing techniques used for fabricating
composite materials were identified. Their latest development,
new trends, and the effects of key factors were addressed and
discussed. A comparative study was presented showing the
potential and versatility for producing composite materials
along with their possible future applications. The drawbacks of
the existing techniques and the research gaps were determined,
and guidelines for meeting future demand were provided. In
addition, there is a growing need for more analytical modeling/
simulation works in most of the fields covered in this study, as
most of the available results to date have tended to be exper-
imental in nature. The key recommendations that can be drawn
from this study are summarized as follows:

e Unlike macromanufacturing, the choice of composite
materials is limited in micromanufacturing. This requires
substantial additional research to attempt different
combinations of matrix and fiber constituents for
producing microcomponents of composite materials.
Though there are numerous methods used for micro-
manufacturing of bulk materials, many of them have yet
to be implemented for manufacturing of composite
materials. Since there are two or more distinct phases
involved in a composite material, their appropriate
distribution and uniform flow must be controlled for
successful fabrication.

There has been noticeable progress in the microforming
of composite materials. The techniques involved include
microrolling, microextrusion, MDD, and nonconven-
tional approaches. Compared to bottom-up methods
(e.g. PVD), these techniques provide coarser and nonuni-
form microstructures. Nevertheless, uniformity can be
improved by selecting appropriate combinations of
materials with similar hardness and strain hardening rates
during microforming. Adding nanoparticles has also been
shown to be another promising tactic to improve the
microstructure. Similarly, applying heat could improve
further grain refinement.

Another advancement reported is the microforming of
laminate composite materials using various techniques,
such as microrolling and MDD. However, these techni-
ques still lack descriptions of the interfacial behavior of
the different laminas used. The material flow character-
istics of different layers, prevention of defects (e.g.
fracture and wrinkling during MDD), and investigation of
stress and strain distribution of the composite parts
formed require further research.

Obtaining finer (nanocrystalline) grain structure is
reported to be a common trend for improving material
properties, such as high strength/hardness, improved
ductility /toughness, enhanced diffusivity, and better
thermal, electrical, and magnetic properties. The use of
SPD in fabricating composite materials is still new,
leading to a need for further substantial research.
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Although composite materials are processed in near net
shape, further machining operations are often inevitable.
However, machining mechanisms for composite materials
are not yet well understood, requiring considerable
experimental studies to reveal the nature of the machining
behavior of composite materials. Various aspects, such as
the effects of microstructure, strengthening mechanism,
minimum chip thickness, and effects of lamination,
require further investigation to fully understand the
characteristics of the micromachining of composite
materials.

In many cases, micromachining of composite materials
using conventional techniques or tools is difficult due to
the presence of reinforcing constituents. This could be
overcome by employing nonconventional techniques, e.g.
laser, EDM, ECM, abrasive jet machining, and micro-
ultraprecision grinding. In addition, FE methods could
also be used to simulate and analyze the cutting behavior
of composite materials.

Investment casting is reported to be a popular method for
producing composite material microparts. However, the
intrinsic limitation of poor surface quality of this
technique compels us to find alternative techniques.
Permanent mold casting is a prominent method in
macroscale techniques; however, it could be implemented
in microscale techniques. Another emerging micromanu-
facturing technique is composite casting for producing
complex-shaped microparts or microsystems consisting
of different metals and ceramics. Hence, the major
challenge is to produce stable mechanical bonding
between dissimilar materials. This drawback could be
minimized by choosing appropriate combinations.
Further work could be focused on improving the
production system, expanding the variety of materials
used for microcomposite casting, and the characterization
of mechanical properties.

Although studies have already revealed the viability of
microinjection molding for manufacturing composite
material microcomponents, research and development in
this field is still in its embryonic stage; and many
shortcomings still need to be addressed. Advancements in
automation and control technology, together with
improved tooling accuracy, may positively minimize the
deviation of the final products and the difficulties arising
from production systems using this technique.
Microjoining is an emerging manufacturing technique
that provides components with multifunctional abilities.
A good understanding of microjoining, in many cases,
requires multidisciplinary knowledge from various fields,
i.e. materials science (metallurgy), solid and fluid
mechanics, physics, chemistry, and electrical engineering
and electronics. Simplicity in design, easy control, and
higher bonding quality will be one of the objectives of
future research in the field of microjoining of composite
materials.

In addition to conventional techniques, there are a number
of nonconventional advanced micromanufacturing tech-
niques. They include laser-based techniques, additive
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micromanufacturing, advanced sintering processes (e.g.
hot isostatic pressing and spark and pulse plasma
sintering), and soft lithography. These techniques are
attracting considerable attention in fabricating micropro-
ducts made of composite materials. Consequently, there is
a trend of combining multiple methods together that is
referred to as hybrid techniques, which has significant
practical applications and deserves further research.

Size effects have been a major concern for producing
miniature products regardless of the type of materials
used. When dealing with composite materials, additional
factors, such as size, shape, and volume of reinforcement
in the matrix and fiber/matrix interaction, that appear to
be imporant to accurately address scaling down to
microscale need to be considered. In addition, an
optimum bonding strength between reinforcement and
matrix materials is also required. Therefore, obtaining an
optimum bonding strength and analyzing the size effects
may provide an avenue for future research to improve the
quality of composite material microparts.

In conclusion, as monolithic materials cannot meet many
of the extreme requirements, composite materials have
the potential to solve problems. However, their usage in
microscale is still limited, providing unlimited opportu-
nities for future research. The aim of this paper was,
therefore, to be a helpful tool for promoting the
micromanufacturing technology of composite materials.
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